Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nanophotonics ; 0(0), 2022.
Article in English | Web of Science | ID: covidwho-1997353

ABSTRACT

The research in the field of optical biosensors is continuously expanding, thanks both to the introduction of brand new technologies and the ingenious use of established methods. A new awareness on the potential societal impact of this research has arisen as a consequence of the Covid-19 pandemic. The availability of a new generation of analytical tools enabling a more accurate understanding of bio-molecular processes or the development of distributed diagnostic devices with improved performance is now in greater demand and more clearly envisioned, but not yet achieved. In this review, we focus on emerging innovation opportunities conveyed by label-free optical biosensors. We review the most recent innovations in label-free optical biosensor technology in consideration of their competitive potential in selected application areas. The operational simplicity implicit to label-free detection can be exploited in novel rapid and compact devices for distributed diagnostic applications. The adaptability to any molecular recognition or conformational process facilitates the integration of DNA nanostructures carrying novel functions. The high sensitivity to nanoscale objects stimulates the development of ultrasensitive systems down to digital detection of single molecular binding events enhanced by nanoparticles and direct enumeration of bio-nanoparticles like viruses.

2.
IEEE Photonics J ; 14(1)2022 Feb.
Article in English | MEDLINE | ID: covidwho-1597714

ABSTRACT

Integrated optofluidic biosensors can fill the need for sensitive, amplification-free, multiplex single molecule detection which is relevant for containing the spread of infectious diseases such as COVID-19. Here, we demonstrate a rapid sample-to-answer scheme that uses a field programmable gate array (FPGA) to enable live monitoring of single particle fluorescence analysis on an optofluidic chip. Fluorescent nanobeads flowing through a micro channel are detected with 99% accuracy and particle concentrations in clinically relevant ranges from 3.4×104 to 3.4 × 106/ml are determined within seconds to a few minutes without the need for post-experiment data extraction and analysis. In addition, other extract salient experimental parameters such as dynamic flow rate changes can be monitored in real time. The sensor is validated with real-time fluorescence detection of single bacterial plasmid DNA at attomolar concentrations, showing excellent promise for implementation as a point of care (POC) diagnostic tool.

3.
ACS Nano ; 15(11): 18023-18036, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1493017

ABSTRACT

Cytokine storm, known as an exaggerated hyperactive immune response characterized by elevated release of cytokines, has been described as a feature associated with life-threatening complications in COVID-19 patients. A critical evaluation of a cytokine storm and its mechanistic linkage to COVID-19 requires innovative immunoassay technology capable of rapid, sensitive, selective detection of multiple cytokines across a wide dynamic range at high-throughput. In this study, we report a machine-learning-assisted microfluidic nanoplasmonic digital immunoassay to meet the rising demand for cytokine storm monitoring in COVID-19 patients. Specifically, the assay was carried out using a facile one-step sandwich immunoassay format with three notable features: (i) a microfluidic microarray patterning technique for high-throughput, multiantibody-arrayed biosensing chip fabrication; (ii) an ultrasensitive nanoplasmonic digital imaging technology utilizing 100 nm silver nanocubes (AgNCs) for signal transduction; (iii) a rapid and accurate machine-learning-based image processing method for digital signal analysis. The developed immunoassay allows simultaneous detection of six cytokines in a single run with wide working ranges of 1-10,000 pg mL-1 and ultralow detection limits down to 0.46-1.36 pg mL-1 using a minimum of 3 µL serum samples. The whole chip can afford a 6-plex assay of 8 different samples with 6 repeats in each sample for a total of 288 sensing spots in less than 100 min. The image processing method enhanced by convolutional neural network (CNN) dramatically shortens the processing time ∼6,000 fold with a much simpler procedure while maintaining high statistical accuracy compared to the conventional manual counting approach. The immunoassay was validated by the gold-standard enzyme-linked immunosorbent assay (ELISA) and utilized for serum cytokine profiling of COVID-19 positive patients. Our results demonstrate the nanoplasmonic digital immunoassay as a promising practical tool for comprehensive characterization of cytokine storm in patients that holds great promise as an intelligent immunoassay for next generation immune monitoring.


Subject(s)
COVID-19 , Microfluidics , Humans , Cytokine Release Syndrome/diagnosis , COVID-19/diagnosis , Immunoassay/methods , Cytokines/analysis , Machine Learning
4.
Biosens Bioelectron ; 194: 113588, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1372896

ABSTRACT

Ultrasensitive, versatile sensors for molecular biomarkers are a critical component of disease diagnostics and personalized medicine as the COVID-19 pandemic has revealed in dramatic fashion. Integrated electrical nanopore sensors can fill this need via label-free, direct detection of individual biomolecules, but a fully functional device for clinical sample analysis has yet to be developed. Here, we report amplification-free detection of SARS-CoV-2 RNAs with single molecule sensitivity from clinical nasopharyngeal swab samples on an electro-optofluidic chip. The device relies on optically assisted delivery of target carrying microbeads to the nanopore for single RNA detection after release. A sensing rate enhancement of over 2,000x with favorable scaling towards lower concentrations is demonstrated. The combination of target specificity, chip-scale integration and rapid detection ensures the practicality of this approach for COVID-19 diagnosis over the entire clinically relevant concentration range from 104-109 copies/mL.


Subject(s)
Biosensing Techniques , COVID-19 , Nanopores , COVID-19 Testing , Humans , Optical Tweezers , Pandemics , RNA, Viral/genetics , SARS-CoV-2
5.
Nano Lett ; 21(11): 4643-4653, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1303734

ABSTRACT

DNA quantification is important for biomedical research, but the routinely used techniques rely on nucleic acid amplification which have inherent issues like cross-contamination risk and quantification bias. Here, we report a CRISPR-Cas12a-based molecular diagnostic technique for amplification-free and absolute quantification of DNA at the single-molecule level. To achieve this, we first screened out the optimal reaction parameters for high-efficient Cas12a assay, yielding over 50-fold improvement in sensitivity compared with the reported Cas12a assays. We further leveraged the microdroplet-enabled confinement effect to perform an ultralocalized droplet Cas12a assay, obtaining excellent specificity and single-molecule sensitivity. Moreover, we demonstrated its versatility and quantification capability by direct counting of diverse virus's DNAs (African swine fever virus, Epstein-Barr virus, and Hepatitis B virus) from clinical serum samples with a wide range of viral titers. Given the flexible programmability of crRNA, we envision this amplification-free technique as a versatile and quantitative platform for molecular diagnosis.


Subject(s)
African Swine Fever Virus , Epstein-Barr Virus Infections , African Swine Fever Virus/genetics , Animals , CRISPR-Cas Systems , DNA/genetics , Herpesvirus 4, Human , Swine
SELECTION OF CITATIONS
SEARCH DETAIL